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Abstract

The design of ship guidance and motion control systems is generally
based on the Newton-Euler equations motion and kinematic transfor-
mations. These are naturally formulated in terms of a combination
of inertial and body-fixed coordinates—manoeuvring coordinates. The
data used in this formulation can be obtained from numerical hydro-
dynamics, experimental hydrodynamics, or both. When numerical hy-
drodynamics is used, the programs that calculate ship data (added
mass, damping, force and motion response operators, etc.) use, in gen-
eral, a formulation of the equations of motion in terms of a different
set of coordinates—seakeeping or perturbation coordinates. Therefore,
appropriate transformations have to be made to formulate consistent
models. Details of the derivations of these transformations are often
omitted in the literature, and blunders are common.

This report has, therefore, two objectives. The first one is to re-
view the geometrical aspects of ship motion (frames, coordinates and
transformations) commonly used in the areas of manoeuvring and sea-
keeping and introduce the kinematic transformations that relates the
coordinates used in these two areas. The second objective is to intro-
duce a notation which is consistent with the coordinates used in both
areas.
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1 Introduction

The study of ship dynamics has traditionally been separated into two main
areas:

• Steering and manoeuvrability (Manoeuvring),

• Seakeeping.

Steering and manoeuvrability—commonly shorten to manoeuvring—refers
to the study of ship motion in the absence of wave-excitation (calm water).
This can be considered in open or confined waters (usually shallow) and at
low or high speeds. In these conditions, the motion results from the action of
control devices: deflection control surfaces (rudders) and propulsion units.
Seakeeping, on the other hand, refers to the study of motion, stability and
control when there is wave excitation and while the vessel keeps its course
and its speed constant (which includes the case of zero speed).

Although both areas are concerned with the same issues (study of mo-
tion, stability and control), the separation allows one making different as-
sumptions that simplify and make the study trackable in each case. The
foundations of this separation lie in the fact that particular ship operations
are commonly performed in particular environmental conditions. A con-
sequence of this separation is the use of different set of coordinates and
different reference frames in each of these areas.

In the design of guidance and control systems for ships, it is natural to
use manoeuvring coordinates to formulate the Newton-Euler equations of
motion (Fossen, 1994; Fossen, 2002). Nowadays, it is a standard practice for
ship motion simulation and control to obtain preliminary ship design data
from hydrodynamic programs (Smogeli et al., 2005; Fossen, 2005). Most hy-
drodynamic programs, however, use seakeeping coordinates; and therefore,
it is necessary to transform the data to obtain consistent models. This issue
is the main motivation for this report because details of the derivations of
these transformations are often omitted in the literature, and blunders are
common.

The report has two objectives. The first one is to review the geometrical
aspects of ship motion (frames, coordinates and transformations) commonly
used in the areas of manoeuvring and seakeeping and derive the kinematic
transformations that relates the coordinates used in these two areas. Details
of these derivations are often omitted in the literature, and blunders are
common. The second objective is to introduce a notation which is consistent
with the coordinates used in both areas.
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2 Reference Frames

To describe the position, orientation, forces and geometry of a ship the
following four orthonormal right-hand-sided reference frames are commonly
used—see Figures 1:

• Geometric (g-frame),

• Noth-east-down (n-frame),

• Body-fixed (b-frame),

• Hydrodynamic (h-frame).

These frames have specific uses:

• The g-frame is used to define the geometry of the hull (table of off-
sets), the floating conditions (heel and trim), and the location of other
reference frames in the vessel.

• The n-frame is used to define the position of the vessel on the earth,
and the direction of wind and current.

• The b-frame is the frame to which all the velocity and acceleration
measurements taken on board are referred. This frame is also used
to formulate the equations of motion and to define some ship motion
performance indices.

• The h-frame is used to define the wave elevation at the vessel location
and to compute some of the hydrodynamic forces and parameters using
standard hydrodynamic programs.

The location of the different reference frames are defined as follows (Perez,
2005):

• The g-frame (og,g1,g2,g3) is fixed to the hull. The positive unit
vector g1 along the x-axis points towards the bow, g2 along the y-axis
points towards starboard and g3 along the z-axis points upwards. The
origin of this frame og is located along the centre-line plane and at
the intersection of the baseline (BL) and the aft perpendicular (AP),
which is usually taken at the rudder stock—see Figure 2.

• The n-frame (on,n1,n2,n3) is a local geographical frame fixed to
the Earth. The positive unit vector n1 points towards the North, n2

points towards the East, and n3 points towards the centre of the Earth.
The origin, on, is located on mean water free-surface at an appropri-
ate location. This frame is considered inertial. This is a reasonable
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Figure 1: Notation and sign conventions for ship motion description.

assumption because the velocity of marine vehicles is small enough
for the forces due to the rotation of the Earth being negligible com-
pared to the hydrodynamic forces acting on the vehicle (Fossen, 2002).

• The b-frame (ob,b1,b2,b3) is fixed to the hull. The positive unit
vector b1 points towards the bow, b2 points towards starboard and
b3 points downwards. For marine vehicles, the axes of this frame are
chosen to coincide with the principal axes of inertia; this determines
the position of the origin of the frame, ob, (Fossen, 2002).

• The h-frame(oh,h1,h2,h3) is not fixed to the hull; it moves at the
average speed of the vessel following its path. The positive unit vector
h1 points forward and it is aligned with the low-frequency heading
angle ψ 1. The positive unit vector h2 points towards starboard, and
h3 points downwards. The horizontal plane that contains the unit
vectors h1 and h2 coincides with the mean free surface of the water.

1The angle ψ̄ is obtained by filtering out the 1st-order wave-induced motion (oscillatory
motion), and keeping the low frequency motion, which can be either equilibrium or slowly-
varying. Hence, ψ̄ is constant for a ship sailing in a straight-line path.
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The origin oh is determined such that the zh-axis passes through the
centre of gravity. This frame is considered when the vessel sails at
a constant speed (which also includes the case of zero speed), and a
constant heading; and therefore, this frame is considered inertial.
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Figure 2: Main particulars and reference frames: geometric (origin og); hy-
drodynamic (origin oh); and body-fixed (origin ob); CG—centre of grav-
ity; LCG—lateral centre of gravity (distance); V CG—vertical centre of
gravity (distance); AP—aft perpendicular; FP—front perpendicular; Lpp—
length between perpendiculars; T—draught; DWL—design waterline and
BL–baseline.

The positive convention for the different frames described above will be
adopted in the rest of the report, and it is also the positive convention
adopted in Marine Systems Simulator (MSS, 2004; Smogeli et al., 2005). In
the literature and in different hydrodynamic programs, however, you may
find other conventions.

3 Mathematical Notation for Vectors

To describe vectors we will use cartesian coordinate frames, and the coor-
dinates will be denoted by a column vector. Therefore, a vector u can be
described as

u =





u1

u2

u3



 =
[
u1 u2 u3

]T
. (1)
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The vector u can be considered independent of a reference frame, and in
this case it is referred to as a free vector—this is useful when introducing
relationships between vectors (e.g., the cross product) that hold independent
of the reference in which the vectors are expressed.

When a vector is described relative to a frame f , however, we will use
the following notation:

uf =






uf
1

uf
2

uf
3




 =

[

uf
1

uf
2

uf
3

]T

. (2)

To describe the motion of the ship, we use bound vectors, i.e., vectors for
which the line of action and the point of application are both prescribed in
addition to its direction and modulus (Sciavicco and Siciliano, 2004). Then,
it is convenient to use a mathematical notation that indicates the particular
application point and the reference frame in which the vector is expressed.

The position of a point s with respect to the reference frame f , expressed
in the frame g will be denoted by

r
g
fs = xgfsg1 + ygfsg2 + zgfsg3 (3)

where gi, i = 1, 2, 3 are the unit vectors along the reference g-frame axes,
and xgfs, y

g
fs and zgfs are the components of the vector r

g
fs in this frame. As

a short-hand notation, we will use the coordinate vector form

r
g
fs =






xgfs
ygfs
zgfs




 = [xgfs, y

g
fs, z

g
fs]

t. (4)

Note, for example, the use of this notation in Figure 2 to indicate the position
of the centre of grabity CG with respect to the b-frame, i.e., rbbCG.

A similar notation will be used for the velocities and accelerations:

• v
g
fs denotes the velocity of the point s with respect to a frame f ,

expressed in the frame g, i.e., v
g
fs = ṙ

g
fs.

• v̇
g
fs denotes the acceleration of the point s with respect to a frame f ,

expressed in the frame g, i.e., v̇
g
fs = r̈

g
fs.

When we consider the velocity of rotation of one reference frame with respect
to another, we will denote this by

• ω
g
fg and ω

f
fg, which are the angular velocity vectors of the frame g with

respect to the frame f expressed in the frame g and f respectively.

The definition of angular velocities will be addressed in more details latter.

6



4 Coordinates for Ship Motion Description

4.1 Manoeuvring Coordinates

The position of a vessel is defined by the coordinates of the origin of the
b-frame, ob, relative to the n-frame:

rnnob
,





n
e
d



 ,

where n denotes the North component, e denotes the East component,
and d denotes the Down component. This is illustrated in Figure 3, which
also shows the ship trajectory and the linear-velocity vector ṙnob

. The attitude

n1 (North)

n3 (Down)

n2 (East)

Ship trajectory

rnnob

ṙnnob

on

ob

Figure 3: Ship position and velocity vectors.

(or orientation) of a vessel is defined by the orientation of the b-frame relative
to the n-frame. This is given by the three consecutive rotations about the
main axes that take the n-frame into the b-frame. These rotations can be
performed in a different order (there are 12 different ways of doing this),
and each triplet of angles rotated are called a set of Euler angles. The most
commonly used set of Euler angles are yaw, pitch and roll, which correspond
the rotations performed in the following order—see Figure 4:

1. rotation about the zn axis an angle ψ (yaw angle),

2. rotation about the y′ axis an angle θ (pitch angle),
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3. rotation about the x′′ axis an angle φ (roll angle).
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z′′z′′

x′′ xb ≡ x′′

yb
zb
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θ (Pitch)

φ (Roll)

1st-Rotation about zn

2nd-Rotation about y′ 3rd-Rotation about x′′

Figure 4: Yaw, pitch and Roll.

The vector of roll, pitch and yaw that take the n-frame into the orienta-
tion of the b-frame using will be defined2 as

Θnb ,





φ
θ
ψ



 . (5)

Following the notation of Fossen (1994; 2002), the generalised position
vector (position and orientation) is defined as

η ,

[
rnnob

Θnb

]

= [n, e, d, φ, θ, ψ]t. (6)

The linear and angular velocities of the ship are more conveniently ex-
pressed in the b-frame—this simplifies the equations of motion and is con-
sistent with the measurements taken onboard (Fossen, 1994; Fossen, 2002).

2The order in (5) is consistent with the way in which the equations of motion of marine
vehicles are written in the literature. It should be noted, however, that the rotations are
performed in reverse order, i.e., ψ → θ → φ.
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The generalised velocity vector (linear-angular velocity vector) given in the
b-frame is defined as:

ν ,

[
vbnob

ωb
nb

]

= [u, v,w, p, q, r]t, (7)

where according to the adopted notation:

• vbnob
= [u, v,w]t is the linear velocity of the point ob with respect to the

n-frame expressed in the b-frame. Thus, vbnob
results from expressing

ṙnnob
in the b-frame—see Figure 3. In Section 7, we will discuss the

kinematic transformation that relates these two velocity vectors.

• ωb
nb = [p, q, r]t is the angular velocity of the b-frame with respect to

the n-frame expressed in the frame b.

4.2 Seakeeping Coordinates

As mentioned in the introduction, in seakeeping theory the study ship mo-
tion is performed under the assumption that the ship is motion can be
described as the superposition of a constant and a zero-mean oscillatory
components. The oscillatory motion is due to the first order wave excita-
tion. Note that the case of zero forward speed is also contemplated.

The constant course and speed define a state of equilibrium of motion,
and the action of the waves makes the ship oscillate with respect to this
equilibrium—the oscillations may not necessarily be harmonic. This fun-
damental assumption is the basis of the seakeeping theory of ship motion,
and upon this rely different computational methods used to predict the ship
motion and induced loads. This assumption results in the h-frame being
considered inertial; and therefore, the equations of motion in this frame are
linear and the frequency domain approach can be used to calculate forces
and moments due to sinusoidal wave excitations—see (Bertram, 2004; Faltin-
sen, 1990; Lloyd, 1989; Newman, 1977).

In the absence of wave excitation, the origin oh coincides with the lo-
cation of a point s in the ship. Under the action of the waves, the hull is
disturbed from its equilibrium and the point s oscillates, with respect to its
equilibrium position. This is illustrated in Figure 5.

The Seakeeping coordinates are the following set of generalised perturba-
tion coordinates:

ξ ,

[
rhhs
Θhs

]

= [ξ1, ξ2, ξ3, ξ4, ξ5, ξ6]
t. (8)

Thus, the first three coordinates describe the position of the point s with
respect to the h-frame, and the last three coordinates are the Euler angles
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Figure 5: Seakeeping coordinates. In absence of wave excitation, the h- and
s-frame coincide.

that take the h-frame into the orientation of the s-frame (s, s1, s2, s3) fixed
to the body at at the point s—see Figure 5.

The linear coordinates of (8) are referred to as

• ξ1—surge perturbation,

• ξ2—sway perturbation,

• ξ3—heave perturbation,

If the axes of the s-frame are parallel to those of the b-frame, we can then
write

Θhs = Θhb ,





ξ4
ξ5
ξ6



 =





φ
θ

ψ − ψ



 , (9)

and these angles are referred to as

• ξ4—roll perturbation,

• ξ5—pitch perturbation,
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• ξ6—yaw perturbation.

The perturbation coordinates can be used to describe the oscillatory position
of any point of interest with respect to h-frame. Indeed, if the coordinates
ξ describe the motion of the point s in the hull, and we are interested in
the motion of point of interest x, then following relationships hold for the
velocities and accelerations:

vhhx = [ξ̇1, ξ̇2, ξ̇3]
t + [ξ̇4, ξ̇5, ξ̇6]

t × rhsx

v̇hhx = [ξ̈1, ξ̈2, ξ̈3]
t + [ξ̈4, ξ̈5, ξ̈6]

t × rhsx.
(10)

Where the vector rhsx is the position of the point x with respect to the s-
frame fixed at the point s in the hull, and expressed in the h-frame—see
Figure 5. To express the position of x in the h-frame, we need to introduce
rotation matrices; we will defer this to Section 6.

The cross-product can be conveniently expressed in a matrix form as
(Egeland and Gravdahl, 2002; Fossen, 2002):

a × b , S(a)b = −b× a = −S(b)a, (11)

where the skew-symmetric matrix operator S(·) is defined as:

S : R
3 7→ R

3×3,S(x) =





0 −x3 x2

x3 0 −x1

−x2 x1 0



 , x =





x1

x2

x3



 . (12)

Note that S(a) = −St(a).
Using this, we can re-write (10) as

vhhx = [I3×3, S
t(rhsx)]ξ̇,

v̇hhx = [I3×3, S
t(rhsx)]ξ̈.

(13)

The validity of expressions (10) and (13) can be verified using the results of
Section 6.

4.3 Seakeeping Coordinates in Hydrodynamic Programmes

Different hydrodynamic programmes can output data in different forms.
Usually, the variables ξ are defined as in (8). Some codes, however, allow
the user to specify the point at which the output data is calculated, say x;
typically this point is chosen to be the centre of gravity CG, or any other
point of interest where the motion needs to be evaluated. When this is done,
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the output of the programme is the perturbation of x, with respect to its
equilibrium position x̄ (no wave excitation):

δξx = x− x̄ =

[
[I3×3 St(rssx)]
[03×3 I3×3]

]

ξ. (14)

Where the vector rssx is the position of the point x with respect to the s-frame
expressed in the s-frame—see Figure 5. That is, δξx are the generalised
coordinates of x with respect to a frame fixed at the equilibrium position
x̄ and not fixed to the vessel. The above formula is used to express the
RAO at the location x. Note that the velocities and accelerations are easily
obtained from (14) since rssx is time invariant.

4.4 Unified Coordinates

It follows from the discussion thus far that the seakeeping coordinates are
valid only for a very specific set of conditions that render the h-frame inertial,
i.e., constant speed and slowly-varying changes in heading. Despite these
restrictions, seakeeping coordinates are very important because most of the
theory of ship hydrodynamics and the codes used to compute hydrodynamic
data (motion and loads) use these coordinates. The use of these data for
preliminary ship design is nowadays standard; and therefore, it can be used
to develop models useful for control and fault diagnosis.

If we seek a set of coordinates to describe ship motion that are valid for all
the vessel operational conditions, we need to use the manoeuvring generalised
coordinates η and ν defined in (6) and (7). This set of coordinates have the
following properties (Fossen, 2002):

• These coordinates describe the motion in any regime (no restrictions
to constant course or speed).

• Velocities and accelerations measurements taken on board are con-
veniently expressed in body-fixed frames; therefore, the manoeuvring
coordinates are the natural choice.

• The equations of motion in terms of these coordinates are simple to
implement for computer simulation.

Table 1 sumarises the notation of the manoeuvring and seakeeping coordi-
nates. Before moving on to the kinematic transformations that express the
relations between velocities in the different frames, let us review in the next
section additional angular coordinates used in guidance of marine systems.
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Table 1: Summary of nomenclature used for the manoeuvring and seakeep-
ing coordinates.

Coordinate Name Definition frame

n North position n-frame
e East position n-frame
d Down position n-frame

φ Roll angle Euler angle (n→ b)
θ Pitch angle Euler angle (n→ b)
ψ Heading or yaw angle Euler angle (n→ b)

u Surge velocity b-frame
v Sway velocity b-frame
w Heave velocity b-frame

p Roll rate b-frame
q Pitch rate b-frame
r Yaw rate b-frame

ξ1 Surge perturbation h-frame
ξ2 Sway perturbation h-frame
ξ3 Heave perturbation h-frame

ξ4 Roll perturbation Euler angle (h→ b)
ξ5 Pitch perturbation Euler angle (h→ b)
ξ6 Yaw perturbation Euler angle (h→ b)

5 Additional Angular Coordinates Used in Guid-

ance

Let us define the total ship-velocity vector in the b-frame:

vbnob
= [u, v,w]t. (15)

This velocity vector can be separated into its slowly-varying or equilibrium
components and perturbations about these components:

u = ū+ δu

v = v̄ + δv

w = w̄ + δw.

Then, for the angles about the z-axis of surface ships, it is convenient to
distinguish between the following (see Figure 6):

• Heading or yaw angle ψ. This is the first rotation of the sequence
of rotations (Euler angles) that take the n- into the b-frame—see Sec-
tion 4.1.

• Yaw perturbation angle ξ6. This is the first rotation of the sequence
of rotations (Euler angles) that take the h- into the b-frame—see Sec-
tion 4.2.

13



• Drift angle β. This is the angle between the positive x-axis of the
b-frame and the average ship velocity vector ū , i.e.,

β = arctan
( v̄

ū

)

, (16)

provided ū is not zero.

• Course angle γ. This is the angle between the positive x-axis of the
n-frame the ship velocity vector ū.

γ = ψ + β

β

xn

ynv̄

ū

xh

yh

ψ

ξ6

ξ

xb

yb

ū

s

oh s̄
ob

Figure 6: Angles for the horizontal plane.

6 Kinematic Transformations

6.1 Rotation Matrices

The transformation of vector coordinates between different frames is per-
formed via appropriate transformation matrices. Following (Egeland and
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Gravdahl, 2002), the generic unbound vector r, can be expressed in either
the frame a or the frame b as

r =

3∑

i=1

rai ai and r =

3∑

i=1

rbibi, (17)

where the vectors ai and bi are the unit vectors along the axis of the reference
frames a and b respectively, and rai = r · ai and rbi = r · bi. Then,

rai = r · ai =





3∑

j=1

rbjbj



 · ai =

3∑

j=1

rbj(ai · bj). (18)

In matrix form,





ra
1

ra
2

ra
3





︸ ︷︷ ︸

ra

=





(a1 · b1) (a1 · b2) (a1 · b3)
(a2 · b1) (a2 · b2) (a2 · b3)
(a3 · b1) (a3 · b2) (a3 · b3)





︸ ︷︷ ︸

Ra

b





rb
1

rb
2

rb
3





︸ ︷︷ ︸

rb

, (19)

from which it follows the notation Ra
b for the so-called rotation matrix from

a to b (which takes vectors expressed in the frame b to the frame a):

Ra
b ,





(a1 · b1) (a1 · b2) (a1 · b3)
(a2 · b1) (a2 · b2) (a2 · b3)
(a3 · b1) (a3 · b2) (a3 · b3)



 =
[
ba

1
ba

2
ba

1

]
. (20)

As indicated above, the entries of a rotation matrix are the inner products
of the unit vectors of the reference frames involved:

Ra
b (i, j) = (ai · bj), i = 1, 2, 3; j = 1, 2, 3. (21)

We can also see that the columns of the rotation matrix are the unit vectors
of the b-frame expressed in the a-frame.

Rotation matrices have the following properties:

1. They can be seen as transformation matrices. This takes the coordi-
nates of the vector r in the b-frame to the coordinates in the a-frame,
i.e.,

ra = Ra
b rb. (22)

2. They can be seen as rotation matrices. If the vector r has coordinates
ra is rotated to the vector s with coordinates sb = ra, then

sa = Ra
b ra. (23)
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3. They are elements of the special orthogonal group of order 3, SO(3):

SO(3) =
{
R|R ∈ R

3×3, RRt = I3×3, and det(R)=1
}
. (24)

Thus,
(Ra

b )
−1 = (Ra

b )
t = Rb

a.

6.2 Composite and Simple Rotations

The rotation from a frame a to a frame c can be describes as a composite
rotation from the frame a to the frame b and then a rotation from the frame
b to the frame c:

rb = Rb
c v

c

ra = Ra
b vb

(25)

Combining the above, we obtain

ra = Ra
b Rb

c v
c. (26)

Then,

Ra
c = Ra

b Rb
c. (27)

This result is extendable to any number of intermediate rotations.
A rotation is simple, if it is a rotation about a single axis (not necessary

a coordinate axis). If we consider rotations about the coordinates axes we
obtain:

• A rotation of an angle ψ about the z-axis:

Rz,ψ ,





cosψ − sinψ 0
sinψ cosψ 0

0 0 1



 (28)

• A rotation of an angle θ about the y-axis:

Ry,θ ,





cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ



 (29)

• A rotation of an angle φ about the x-axis:

Rx,φ ,





1 0 0
0 cosφ − sinφ
0 sinφ cosφ



 (30)
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The above results follow readily from (20). For example, the single rotation
about the z-axis (28) can be obtained by calculating the inner products of
the unit vectors shown in Figure Figure 7:

(a1 · b1) = cosψ

(a1 · b2) = − sinψ

(a2 · b1) = sinψ

(a2 · b2) = cosψ

(a1 · b3) = (a2 · b3) = (a3 · b1) = (a3 · b2) = 0

(a3 · b3) = 1.

(31)

a1

a2

b1
b2

a3 ≡ b3

ψ

Figure 7: Single rotation about the z-axis.

6.3 Rotation Matrices in Terms of Yaw, Pitch and Roll

The rotation matrix can be described in different ways and as a function
of different parameters—see, for example, Egeland and Gravdahl (2002).
When we discussed the orientation of the vessel in Section 4.1, we did in
terms of yaw, pitch and yaw—a particular choice of Euler angles. In this
section, we will express the rotation matrix in terms of these angles.

Using the simple rotation matrices (28)-(30), and the extension of ex-
pression (27) for the three composite rotations, we obtain:

Ra
b = Rz,ψ Ry,θ Rx,φ. (32)

Note that the matrix multiplication order above is consistent with the fact
that va = Ra

b vb.
After performing the matrix multiplications, we find the rotation matrix

in terms of yaw, pitch and roll is
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Ra
b (Θab) =





cψcθ −sψcφ+ cψsθsφ sψsφ+ cψcφsθ
sψcθ cψcφ + sφsθsψ −cψsφ+ sψcφsθ
−sθ cθsφ cθcφ



 , (33)

where s ≡ sin(·) and c ≡ cos(·). To make explicit that we are using yaw,
pitch and roll to express the rotation matrix, we have used the notation
Ra
b (Θab), where Θab is the vector of yaw, pitch and roll that take the a-

frame into the orientation of the b-frame:

Θab ,
[
φ, θ, ψ

]T
. (34)

7 Velocity Transformations Between the b- and n-

frame

In this section, we will study the transformation that relates the the body-
fixed generalised velocity vector ν—see (7)—to the time derivative of the
generalised position vector η—see (6).

7.1 Linear-velocity Transformation

As illustrated in Figure 3, the position of the ship is given by the vector
rnnob

, and the position trajectory is given by

vnnob
= ṙnnob

=





η̇1

η̇2

η̇3



 =





ṅ
ė

ḋ



 . (35)

The linear velocity vector in the b-frame is simply obtained by expressing
vnnob

in the b-frame. Therefore, the linear velocity transformation between
the b- and the n-frame is simply a rotation:

vnnob
= Rn

b (Θnb)v
b
nob
. (36)

Component wise,





η̇1

η̇2

η̇3



 = Rn
b (Θnb)





ν̇1

ν̇2

ν̇3,



 (37)

with Rn
b (Θnb) given by (33) (modulo substitution a by n).
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7.2 Angular-velocity Transformation

Similar to the previous section, we would like to find the transformation that
relates the time derivatives of yaw, pitch and roll to the body-fixed angular
velocities r, q and p. This transformation is a little more involved than that
of the linear velocities.

We start by noticing that the rotation matrix Ra
b is orthogonal, i.e.,

Ra
b (R

a
b )
T = I. Therefore,

d

dt
[Ra

b (R
a
b )
T ] = Ṙa

b (R
a
b )
T + Ra

b (Ṙ
a
b )
T = 0. (38)

The above expression implies that Ṙa
b (R

a
b )
T is a skew-symmetric matrix.

As mentioned by Egeland and Gravdahl (2002), this means that it can be
described by a column vector.

The vector ωab of angular velocity of the frame b with respect to the
frame a, with coordinates in the frame a satisfies

S(ωa
ab) = Ṙa

b (R
a
b )
T , (39)

where S(·) is the skew-symmetric matrix operator defined in (12). It also
follows that

Ṙa
b = S(ωa

ab)R
a
b = Ra

b S(ωb
ab). (40)

Using the simple rotation matrices (28)–(30), we can define angular velocities
for simple rotations as

ωa

z,ψ̇
= Ṙz,ψ(Rz,ψ)T

ωa

y,θ̇
= Ṙy,θ(Ry,θ)

T

ωa

x,φ̇
= Ṙx,φ(Rx,φ)

T .

(41)

After taking the derivatives and multiplying we obtain

ωa

z,ψ̇
=





0
0

ψ̇



 ωa

y,θ̇
=





0

θ̇
0



 ωa

x,φ̇
=





φ̇
0
0



 . (42)

To obtain insight into the meaning of ωab and the particular ones above,
we can use the angle-axis parameterisation of the rotation matrix:

Ra
b = Rα,ka = I + S(ka) sinα+ S(ka)S(ka)(1 − cosα), (43)

where k is a constant unit vector along the axis of rotation, and α is the
rotated angle. This representation uses a single rotation instead of the three
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rotations described in Section 6.3. By combining (43) with (39) we can
obtain the following relationship—see Egeland and Gravdahl (2002):

S(ωa
ab) = α̇(S(ka) cosα+ S(ka)S(ka) sinα)

(I − S(ka) sinα+ S(ka)S(ka)(1 − cosα))

= α̇
[
S(ka) cosα+ S(ka)2 sinα− S(ka)2 cosα sinα

+ S(ka) sin2 α− S(ka)(cosα− cos2 α) + S(ka)2 cosα sinα

−S(ka)2 sinα
]

= α̇S(ka),

(44)

which implies

ωa
ab = α̇ka. (45)

This is in agreement with expressions (42), and is valid provided the direction
of rotation (k) is stationary.

If we consider now a three-stage composite rotation Ra
d = Ra

bR
b
cR

c
d, its

time derivative satisfies

Ṙa
d = Ṙa

bR
b
cR

c
d + Ra

b Ṙ
b
cR

c
d + Ra

bR
b
cṘ

c
d. (46)

Using (39), we find that

S(ωa
ad) = Ṙa

d(R
a
d)
T

= (Ṙa
bR

b
cR

c
d + Ra

b Ṙ
b
cR

c
d + Ra

bR
b
cṘ

c
d)(R

c
d)
T (Rb

c)
T (Ra

b )
T

= Ṙa
b (R

a
b )
T + Ra

b Ṙ
b
c(R

b
c)
T (Ra

b )
T + Ra

c Ṙ
c
d(R

c
d)
T (Ra

c )
T

= S(ωa
ab) + Ra

bS(ωb
bc)(R

a
b )
T + Ra

cS(ωc
cd)(R

a
c )
T

= S(ωa
ab) + S(ωa

bc) + S(ωa
cd),

(47)

which implies that
ωa
ad = ωa

ab + ωa
bc + ωa

cd. (48)

This holds for any frame and not only the a-frame.

Therefore, we can say that for the composite rotation Ra
d =

Ra
bR

b
cR

c
d the following holds:

ωad = ωab + ωbc + ωcd. (49)

Expression (49) is a key result to obtain the transformation we are after.
Indeed, for angular-velocity transformation between the n- and the b-frame,
we can write the following rotation matrix using consecutive rotations:

Rn
b = Rn

dR
d
cR

c
b. (50)
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This is depicted in Figure 4, where the frame d has axis (x′, y′, z′) and the
frame c has axis (x′′, y′′, z′′). Then according to (49), the rotations (50) lead
to

ωb
nb = ωb

nd + ωb
dc + ωb

cb. (51)

From the latter it follows that

ωb
nb = (Rx,φ)

T (Ry,θ)
T





0
0

ψ̇



 + (Rx,φ)
T





0

θ̇
0



 +





φ̇
0
0



 , (52)

which results in the sought angular-velocity transformation transformation
between the n- and the b-frame:

ωb
nb = TΘ(Θnb)

−1 Θ̇nb, (53)

with

ωb
nb =





p
q
r



 , Θ̇nb =





φ̇

θ̇

ψ̇



 (54)

and TΘ(Θnb) and its inverse are given by

TΘ(Θnb) =





1 sφtθ cφtθ
0 cφ −sφ
0 sφ/cθ cφ/cθ



 ,

TΘ(Θnb)
−1 =





1 0 −sθ
0 cφ cθsφ
0 −sφ cφcθ





(55)

with s ≡ sin(·), c ≡ cos(·), t ≡ tan(·) and cθ 6= 0.

Note that the transformation TΘ(Θnb) is not orthogonal; therefore, TΘ(Θnb)
T 6=

TΘ(Θnb)
−1.

7.3 Kinematic Transformation n-b frames

Using (36) and (53), we can define the following kinematic transformation
for the manoeuvring coordinates:

η̇ = Jnb (Θnb)ν, (56)

with

Jnb (Θnb) ,

[
Rn
b (Θnb) 03×3

03×3 TΘ(Θnb)

]

, (57)

where Rn
b (Θnb) given by (33) (modulo substitution a by n) and

TΘ(Θnb) by (55).
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8 Velocity Transformations Between the h- and b-

frame

In this section, we will find the kinematic transformation between the time-
derivative of the generalised perturbation coordinate vector ξ, cf., (8), and
the generalized velocity vector ν, cf. (7). The time-derivative of ξ is

ξ̇ =

[
vhhs
ωh
hb

]

. (58)

To make the analysis general, we will assume that the point s 6= ob. There-
fore, ξ̇ describes the linear and angular velocity of the point s with respect
to the h-frame—see Figure 5.

8.1 Linear Velocity Transformation

rnob

rhob

rnoh

on

ob
oh

Figure 8: Relative position of frames.

Let us consider Figure 8. From this figure, it follows that independent
of the coordinate frame

rnob
= rnoh

+ rhob
. (59)

Expressed in the n-frame this becomes

rnnob
= rnnoh

+ Rn
hr
h
hob
, (60)

in which

Rn
h = Rz,ψ̄ =





cos ψ̄ − sin ψ̄ 0
sin ψ̄ cos ψ̄ 0

0 0 1



 , (61)

and ψ̄ is the slowly-varying heading of the ship that is obtained by filtering
the motion induced by the first-order wave loads.
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Taking the time derivative of (60), we obtain

vnnob
= vnnoh

+ Rn
hv

h
hob

+ Ṙn
hr
h
hob
. (62)

which can be expresses as

vnnob
= vnnoh

+ Rn
hv

h
hob

+ S(ωn
nh)R

n
hr
h
hob
. (63)

If we multiply both sides of (63) by Rb
n, such that the left-hand side becomes

vbnob
(the linear velocity components of ν), we obtain:

vbnob
= Rb

nv
n
noh

+ Rb
hv

h
hob

+ Rb
nS(ωn

nh)R
n
hr
h
hob
. (64)

Using (13), it follows that

vhhob
= [I3×3 St(rhsob

)]ξ̇. (65)

where rhsob
is the position of the origin of the b-frame relative to the s-frame

expressed in the h-frame. Substituting this in (64), we obtain

vbnob
= Rb

nv
n
noh

+ Rb
h[I3×3 St(rhsob

)]ξ̇ + Rb
nS(ωn

nh)R
n
hr
h
hob
. (66)

Let us make some assumptions:

Assumption 1 The ship sails with a constant (average) heading, or the
changes in heading are slow. This means we can consider ωn

nh ≈ 0.

Assumption 2 The vessel speed can be decomposed into two components
a constant component and a perturbaton component. The constant
component can be zero (anchored or DP operations). This means that
vnnoh

≈ v̄nnoh
or vnnoh

≈ 0.

Assumptions 1 and 2 result in the h-frame being inertial. Assumption 2 al-
lows also to distinguish between transit and anchored or dynamic positioning
operations. Then,

Transit:

vbnob
= Rb

n(Θnb)v̄
n
noh

+ [Rb
h(Θhb) Rb

h(Θhb)S
t(rhsob

)]ξ̇.
(67)

Zero speed:

vbnob
= [Rb

h(Θhb) Rb
h(Θhb)S

t(rhsob
)]ξ̇. (68)
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8.2 Angular Velocity Transformation

The angular velocity transformation between the h- and the b-frame is sim-
ilar to that bewteen the the n- and the b-frame, except that we need to use
the perturbation yaw, pitch and yaw:

ωb
hb = TΘ(Θhb)

−1Θ̇hb, (69)

ωb
hb =





p
q
r



 , Θ̇hb =





ξ̇4
ξ̇5
ξ̇6



 , (70)

and

TΘ(Θhb) =





1 sξ4tξ5 cξ4tξ5
0 cξ4 −sξ5
0 sξ4/cξ5 cξ4/cξ5



 , (71)

TΘ(Θhb)
−1 =





1 0 −sξ5
0 cξ4 cξ5sξ4
0 −sξ4 cξ4cξ5



 (72)

with s ≡ sin(·), c ≡ cos(·), t ≡ tan(·) and cξ5 6= 0.

9 The h to b Kinematic Transformation

Let us combine the results of the previous sections. Thus under Assump-
tions 1 and 2, we have

Transit:

ν = Jbh(Θhb, r
h
sob

) ξ̇ +

[
Rb
n(Θnb)
03×3.

]

v̄nnoh
(73)

Zero speed:

ν = Jbh(Θhb, r
h
sob

) ξ̇ (74)

with

Jbh(Θhb, r
h
sob

) ,

[
Rb
h(Θhb) Rb

h(Θhb)S
t(rhsob

)
03×3 TΘ(Θhb)

−1

]

(75)

10 The b to h Kinematic Transformation

Here we will obtain the inverse of (75), such that

ξ̇ = Jhb (Θhb, r
h
sob

)

(

ν −

[
Rb
n(Θnb)
03×3.

]

v̄nnoh

)

(76)
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To obtain this inverse, we need the following result: for a non-singular par-
titioned matrix

A =

[
A11 A12

A21 A22

]

, (77)

the inverse can be expressed as (Horn and Johnson, 1985):

A−1 =

[
[A11 − A12A

−1

22
A21]

−1 A−1

11
A12[A21A

−1

11
A12 −A22]

−1

[A21A
−1

11
A12 − A22]

−1A21A
−1

11
[A22 − A21A

−1

11
A12]

−1

]

(78)
For the particular case in which A21 = 0, the above reduces to

A−1 =

[
A−1

11
−A−1

11
A12A

−1

22

0 A−1

22

]

(79)

Direct application to this result to (75) yields

Jhb (Θhb, r
h
sob

) , Jbh(Θhb, r
h
sob

)−1 =

[
Rh
b (Θhb) S(rhsob

)TΘ(Θhb)

03×3 TΘ(Θhb)

]

. (80)

Hence,

ξ̇ = Jhb (Θhb, r
h
sob

)

(

ν −

[
Rb
n(Θnb)
03×3.

]

v̄nnoh

)

(81)

with

Jhb (Θhb, r
h
sob

) =

[
Rh
b (Θhb) S(rhsob

)TΘ(Θhb)

03×3 TΘ(Θhb)

]

. (82)

11 Small Angle Approximations for the h to b Kine-

matic Transformation

The small angle approximation of the rotation matrix and the inverse of the
angular velocity transformations from h to b are

Rb
h(Θhb) ≈





1 ξ6 −ξ5
−ξ6 1 ξ4
ξ5 −ξ4 1



 TΘ(Θhb)
−1

≈





1 0 −ξ5
0 1 ξ4
0 −ξ4 1



 . (83)

The vector rhsob
can is

rhsob
= Rh

s (Θhb)r
s
sob

≈





1 −ξ6 ξ5
ξ6 1 −ξ4
−ξ5 ξ4 1









xssob

yssob

zssob



 . (84)

Thus,

rhsob
=





xhsob

yhsob

zhsob



 ≈





(xssob
− ξ6y

s
sob

+ ξ5z
s
sob

)
(ξ6x

s
sob

+ yssob
− ξ4z

s
sob

)
(−ξ5x

s
sob

+ ξ4y
s
sob

+ zssob
)



 . (85)
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With

S(rhsob
)T =





0 zhsob
−yhsob

−zhsob
0 xhsob

yhsob
−xhsob

0



 . (86)

After multiplying and by considering only the linear terms we find that for
the case of zero forward speed

ν ≈

[
I3×3 St(rssob

)
03×3 I3×3

]

ξ̇, (87)

Componentwise,

u ≈ ξ̇1 + zssob
ξ̇5 − yssob

ξ̇6

v ≈ ξ̇2 − zssob
ξ̇4 + xssob

ξ̇6

w ≈ ξ̇3 + yssob
ξ̇4 − xssob

ξ̇5

p ≈ ξ̇4

q ≈ ξ̇5

r ≈ ξ̇6

(88)

The accelerations then become

u̇ ≈ ξ̈1 + zssob
ξ̈5 − yssob

ξ̈6

v̇ ≈ ξ̈2 − zssob
ξ̈4 + xssob

ξ̈6

w ≈ ξ̈3 + yssob
ξ̈4 − xssob

ξ̈5

ṗ ≈ ξ̈4

q̇ ≈ ξ̈5

ṙ ≈ ξ̈6

(89)

Let us now consider the case of forward speed. To do this we need to consider
the last term in (73). Here we cannot make the assumption of small angle
only for roll and pitch, but not for yaw. Thus, we will consider

ψ = ψ + δψ

φ = φ+ δφ

θ = θ + δθ,

(90)

in which φ = θ = 0.
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We can consider now a series expansion of the rotation matrix:

Rb
n(Θnb) ≈ Rb

n(Θnb) +
dRb

n(Θnb)

dΘnb

∣
∣
∣
∣
Θnb=Θnb

δΘnb. (91)

The first term becomes

Rb
n(Θnb) =





cosψ − sinψ 0

sinψ cosψ 0
0 0 1



 . (92)

The second term becomes

dRb
n(Θnb)

dΘnb

∣
∣
∣
∣
Θnb=Θnb

δΘnb =





− sin(ψ)δψ − cos(ψ)δψ 0

cos(ψ)δψ − sin(ψ)δψ 0
0 0 δψ



 . (93)

Therefore, the second term in (73), which appears due to the average speed
of the ship is





cosψ − sinψ 0

sinψ cosψ 0
0 0 1



 v̄nnoh
+





− sin(ψ)δψ − cos(ψ)δψ 0

cos(ψ)δψ − sin(ψ)δψ 0
0 0 δψ



 v̄nnoh
. (94)

The first term of (94) gives a constant velocity in the body-fixed frame:

ν ,











cosψ − sinψ 0

sinψ cosψ 0
0 0 1
0 0 0
0 0 0
0 0 0











v̄nnoh
. (95)

The final step is obtained by noting that due to the definition of the h-
frame the following holds δψ = ξ6. From this, it follows that the small angle
approximation of (73) is

ν−ν ≈

[
I3×3 St(rssob

)

03×3 I3×3

]

ξ̇+











− sin(ψ)ξ6 − cos(ψ)ξ6 0

cos(ψ)ξ6 − sin(ψ)ξ6 0
0 0 ξ6
0 0 0
0 0 0
0 0 0











v̄nnoh
.

(96)
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If we consider

v̄nnoh
,





U
V
0



 . (97)

then componentwise

u− ū ≈ ξ̇1 + zssob
ξ̇5 − yssob

ξ̇6 − sin(ψ)Uξ6 − cos(ψ)V ξ6

v − v̄ ≈ ξ̇2 − zssob
ξ̇4 + xssob

ξ̇6 + cos(ψ)Uξ6 − sin(ψ)V ξ6

w − w̄ ≈ ξ̇3 + yssob
ξ̇4 − xssob

ξ̇5

p ≈ ξ̇4

q ≈ ξ̇5

r ≈ ξ̇6

(98)

The acceleration then become

u̇ ≈ ξ̈1 + zssob
ξ̈5 − yssob

ξ̈6 − sin(ψ)Uξ̇6 − cos(ψ)V ξ̇6

v̇ ≈ ξ̈2 − zssob
ξ̈4 + xssob

ξ̈6 + cos(ψ)Uξ̇6 − sin(ψ)V ξ̇6

w ≈ ξ̈3 + yssob
ξ̈4 − xssob

ξ̈5

ṗ ≈ ξ̈4

q̇ ≈ ξ̈5

ṙ ≈ ξ̈6

(99)

12 Application Example: Motion Superposition

Model for DP

Let’s take an example in which we use SHIPX-VERES (Fathi, 2004) to
obtain the motion RAOs of a vessel, and we would like to incorporate wave-
induced motion in the equations of motion for testing the design of a control
system for dynamic positioning.

One way of achieving this, is to consider first the motion due to the
control action:

Mbν̇LF + DbνLF + g(ηLF ) = τ bc + τ benv

η̇LF = Jnb (Θnb)νLF ,
(100)

and use motion superposition:

η = ηLF + ηw. (101)

28



In the above equations η is total motion of the vessel, ηLF is the low-
frequency motion, and ηw the wave-induced motion. The generalised forces
on the right hand side of (100) are the control forces and the slowly-varying
environmental loads (current, wind wave drift induced forces). This model
is based on the linearity assumption of the equations of motion.

The motion due to the waves can be obtained by integrating the following

η̇w = Jnb (Θnb)J
b
h(Θhb, r

h
sob

) ξ̇, (102)

where ξ̇ is the motion of the vessel due to waves calculated in the h-frame.
There is one more step that needs to be taken. In Veres, the motion

transfer functions are given with respect to a global frame, which has a dif-
ferent orientation than the h-frame used to derive the transformation above.
The Veres global reference frame is defined as follows (Fathi, 2004):

The x − y plane coincides with the still water plane, the x − z plane co-
incides with the center plane of the vessel. The positive x-axis is directed
towards stern, the y-axis is directed to starboard, and the positive z-axis up-
wards and through the centre of gravity.

Therefore, if we denote the Veres coordinates by ξv, we have that

ξ̇ = Dh
v ξ̇v, (103)

where
Dv
h = diag(−1, 1,−1,−1, 1,−1). (104)

The time series of ξ̇v can be obtained as a sum of sinusoids with amplitudes
and phases calculated from the RAOs and the particular wave spectrum—
see (Perez, 2005).
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